187 research outputs found

    Control of a Solar Energy Systems

    Get PDF
    8th IFAC Symposium on Advanced Control of Chemical ProcessesThe International Federation of Automatic Control Singapore, July 10-13This work deals with the main control problems found in solar power systems and the solutions proposed in literature. The paper first describes the main solar power technologies, its development status and then describes the main challenges encountered when controlling solar power systems. While in other power generating processes, the main source of energy can be manipulated, in solar energy systems, the main source of power which is solar radiation cannot be manipulated and furthermore it changes in a seasonal and on a daily base acting as a disturbance when considering it from a control point of view. Solar plants have all the characteristics needed for using industrial electronics and advanced control strategies able to cope with changing dynamics, nonlinearities and uncertainties.Ministerio de Ciencia e Innovación PI2008-05818Ministerio de Ciencia e Innovación DPI2010-21589-C05-01/04Junta de Andalucía P07-TEP-0272

    Modelling Free Response of a Solar Plant for Predictive Control

    Get PDF
    IFAC System Identification, Kitakyushu, Fukuoka,Japan,1997This paper deals with the identification of a nonlinear plant by means of a neural network (NN) modelling approximation. The problem of neural identification is tackled using a static NN in a NARX configuration. A method is proposed to obtain the number of past values needed to feed the network. The on-line adaptation of the model and other issues are discussed. In order to show the benefits that can be achieved with the proposed methods, the NN model is used within a Model Predictive Control (MPC) framework. The MPC scheme uses the prediction of the output of the system calculated as the sum of the free response (obtained using the nonlinear NN model) and the forced response (obtained linearizing around the current operating point) to optimize a performance index. The control scheme has been applied and tested in a solar power plant

    Feedback linearization control for a distributed solar collector field

    Get PDF
    This article describes the application of a feedback linearization technique for control of a distributed solar collector field using the energy from solar radiation to heat a fluid. The control target is to track an outlet temperature reference by manipulating the fluid flow rate through the solar field, while attenuating the effect of disturbances (mainly radiation and inlet temperature). The proposed control scheme is very easy to implement, as it uses a numerical approximation of the transport delay and a modification of the classical control scheme to improve startup in such a way that results compared with other control structures under similar conditions are improved while preserving short commissioning times. Experiments in the real plant are also described, demonstrating how operation can be started up efficiently.Ministerio de Ciencia y Tecnología DPI2004-07444-C04-04Ministerio de Ciencia y Tecnología DPI2005-0286

    Adaptive control of a solar furnace for material testing

    Get PDF
    IFAC Adaptive Systems in Control and Signal Processing. Glasgow. Scotland. UK. 26/08/1998This paper presents an adaptive control system for controlling the temperature of a solar furnace, which is a high solar concentrating facility made up of heliostats tracking the sun and reflecting solar radiation onto a static parabolic concentrating system at the focal spot of which a high percentage of the solar energy collected by the collector system is concentrated in a small area. A large attenuator (shutter) placed between the collector system and the concentrator serves to control the amount of solar energy used for heating the samples placed at the focal spot. The paper shows the results obtained in the application of adaptive PI controllers to a solar furnace, incorporating feedforward action, anti-windup and slew rate constraint handling mechanisms

    Control of Solar Power Systems: a survey

    Get PDF
    9th International Symposium on Dynamics and Controlof Process Systems (DYCOPS 2010)Leuven, Belgium, July 5-7, 20109This paper deals with the main control problems found in solar power systems and the solutions proposed in literature. The paper first describes the main solar power technologies, its development status and then describes the main challenges encountered when controlling solar power systems.Ministerio de Ciencia y Tecnología DPI2008-05818Ministerio de Ciencia y Tecnología DPI2007-66718-C04-04Junta de Andalucía P07-TEP-0272

    A Robust Adaptive Dead-Time Compensator with Application to A Solar Collector Field

    Get PDF
    This paper describes an easy-to-use PI controller with dead-time compensation that presents robust behaviour and can be applied to plants with variable dead-time. The formulation is based on an adaptive Smith predictor structure plus the addition of a filter acting on the error between the output and its prediction in order to improve robustness. The implementation of the control law is straightforward, and the filter needs no adjustment, since it is directly related to the plant dead-time. An application to an experimentally validated nonlinear model of a solar plant shows that this controller can improve the performance of classical PID controllers without the need of complex calculations.Ministerio de Ciencia y Tecnología TAP95-37

    Modelado basado en el paradigma de los energy hubs de una explotación agraria bajo invernadero con apoyo de energías renovables

    Get PDF
    La gestión de recursos energéticos y materiales en sistemas productivos es un tema habitual en la literatura reciente. En este sentido, se ha desarrollado un modelo de conversión y almacenamiento de recursos heterogéneos en una explotación agraria con el fin de realizar su operación de forma eficiente. A partir del mismo es posible determinar la combinación de recursos de entrada que permiten su operación con el menor coste posible mediante la formulación de un problema de programación lineal en enteros mixta, teniendo en cuenta las características de los equipos y dispositivos del invernadero. Se ha realizado la simulación de un típico día cálido empleando una estrategia de control con horizonte deslizante, observándose en los resultados un uso intensivo de energía solar térmica y fotovoltaica

    Nota de Redacción

    Full text link
    Berenguel, M.; Santos, M. (2022). Nota de Redacción. Revista Iberoamericana de Automática e Informática industrial. 19(3):ii-ii. http://hdl.handle.net/10251/186919OJSiiii19
    corecore